Applications and assessment of QM:QM electronic embedding using generalized asymmetric Mulliken atomic charges.

نویسندگان

  • Priya V Parandekar
  • Hrant P Hratchian
  • Krishnan Raghavachari
چکیده

Hybrid QM:QM (quantum mechanics:quantum mechanics) and QM:MM (quantum mechanics:molecular mechanics) methods are widely used to calculate the electronic structure of large systems where a full quantum mechanical treatment at a desired high level of theory is computationally prohibitive. The ONIOM (our own N-layer integrated molecular orbital molecular mechanics) approximation is one of the more popular hybrid methods, where the total molecular system is divided into multiple layers, each treated at a different level of theory. In a previous publication, we developed a novel QM:QM electronic embedding scheme within the ONIOM framework, where the model system is embedded in the external Mulliken point charges of the surrounding low-level region to account for the polarization of the model system wave function. Therein, we derived and implemented a rigorous expression for the embedding energy as well as analytic gradients that depend on the derivatives of the external Mulliken point charges. In this work, we demonstrate the applicability of our QM:QM method with point charge embedding and assess its accuracy. We study two challenging systems--zinc metalloenzymes and silicon oxide cages--and demonstrate that electronic embedding shows significant improvement over mechanical embedding. We also develop a modified technique for the energy and analytic gradients using a generalized asymmetric Mulliken embedding method involving an unequal splitting of the Mulliken overlap populations to offer improvement in situations where the Mulliken charges may be deficient.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ONIOM-based QM:QM electronic embedding method using Löwdin atomic charges: energies and analytic gradients.

In this work, we report a new quantum mechanical:quantum mechanical (QM:QM) method which provides explicit electronic polarization of the high-level region by using the Löwdin atomic charges from the low-level region. This provides an embedding potential which naturally evolves with changes in nuclear geometry. However, this coupling of the high-level and low-level regions introduces complicati...

متن کامل

Theoretical Study of the Correlation between 14N NQCC and Its Partial Atomic Charge in Amino Derivatives of Adamantane

The electronic structures and the electrostatic potential of some amino derivatives of adamantane have been studied using the density functional theory. The partial atomic charges and nuclear quadrupole coupling constants (NQCC) of 14N nucleus of the considered molecules have been reported. The partial atomic charges are calculated with two methods for 14N nucleus: Mulliken charges and natural ...

متن کامل

Voronoi deformation density (VDD) charges: Assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD methods for charge analysis

We present the Voronoi Deformation Density (VDD) method for computing atomic charges. The VDD method does not explicitly use the basis functions but calculates the amount of electronic density that flows to or from a certain atom due to bond formation by spatial integration of the deformation density over the atomic Voronoi cell. We compare our method to the well-known Mulliken, Hirshfeld, Bade...

متن کامل

Pipek-Mezey Orbital Localization Using Various Partial Charge Estimates.

The Pipek-Mezey scheme for generating chemically intuitive, localized molecular orbitals is generalized to incorporate various ways of estimating the atomic charges, instead of the ill-defined Mulliken charges used in the original formulation, or Löwdin charges, which have also been used. Calculations based on Bader, Becke, Voronoi, Hirshfeld, and Stockholder partial charges, as well as intrins...

متن کامل

Density functional theory study of the adsorption of NO2 molecule on Nitrogen-doped TiO2 anatase nanoparticles

Adsorption of NO2 molecule on pristine and N-doped TiO2 anatase nanoparticles have been studied using the density functional theory (DFT) technique. The structural properties (such as bond lengths and bond angles) and the electronic properties (such as density of states, band structures and atomic partial charges) have been computed for considered nanoparticles. The result...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 129 14  شماره 

صفحات  -

تاریخ انتشار 2008